Kullback–Leibler aggregation and misspecified generalized linear models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kullback – Leibler Aggregation and Misspecified Generalized Linear Models

In a regression setup with deterministic design, we study the pure aggregation problem and introduce a natural extension from the Gaussian distribution to distributions in the exponential family. While this extension bears strong connections with generalized linear models, it does not require identifiability of the parameter or even that the model on the systematic component is true. It is show...

متن کامل

Active learning for misspecified generalized linear models

Active learning refers to algorithmic frameworks aimed at selecting training data points in order to reduce the number of required training data points and/or improve the generalization performance of a learning method. In this paper, we present an asymptotic analysis of active learning for generalized linear models. Our analysis holds under the common practical situation of model misspecificat...

متن کامل

Robust designs for generalized linear models with possible overdispersion and misspecified link functions

We discuss robust designs for generalized linear models with protection for possible departures from the usual model assumptions. Besides possible inaccuracy in an assumed linear predictor, both problems of overdispersion and misspecification in link function are addressed. For logistic and Poisson models, as examples, we incorporate the variance function prescribed by a superior model similar ...

متن کامل

Robust prediction and extrapolation designs for misspecified generalized linear regression models

We study minimax robust designs for response prediction and extrapolation in biased linear regression models. We extend previous work of others by considering a nonlinear fitted regression response, by taking a rather general extrapolation space and, most significantly, by dropping all restrictions on the structure of the regressors. Several examples are discussed. © 2007 Elsevier B.V. All righ...

متن کامل

Misspecified Linear Bandits

We consider the problem of online learning in misspecified linear stochastic multi-armed bandit problems. Regret guarantees for state-of-the-art linear bandit algorithms such as Optimism in the Face of Uncertainty Linear bandit (OFUL) hold under the assumption that the arms expected rewards are perfectly linear in their features. It is, however, of interest to investigate the impact of potentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2012

ISSN: 0090-5364

DOI: 10.1214/11-aos961